CUTE: A Multilingual Dataset for Enhancing Cross-Lingual Knowledge Transfer in Low-Resource Languages
Abstract: LLMs demonstrate exceptional zero-shot capabilities in various NLP tasks, significantly enhancing user experience and efficiency. However, this advantage is primarily limited to resource-rich languages. For the diverse array of low-resource languages, support remains inadequate, with the scarcity of training corpora considered the primary cause. We construct and open-source CUTE Chinese, Uyghur, Tibetan,English dataset, consisting of two 25GB sets of four-language corpora (one parallel and one non-parallel), obtained through machine translation. CUTE encompasses two resource-rich languages (Chinese and English) and two low-resource languages (Uyghur and Tibetan). Prior to constructing CUTE, human assessment validates that the machine translation quality between Chinese-Uyghur and Chinese-Tibetan approaches that of Chinese-English translation. CUTE represents the largest open-source corpus for Uyghur and Tibetan languages to date, and we demonstrate its effectiveness in enhancing LLMs' ability to process low-resource languages while investigating the role of corpus parallelism in cross-lingual transfer learning. The CUTE corpus and related models are made publicly available to the research community.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.