Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Implicit Behavioral Alignment of Language Agents in High-Stakes Crowd Simulations (2509.16457v1)

Published 19 Sep 2025 in cs.CL, cs.AI, and cs.CY

Abstract: Language-driven generative agents have enabled large-scale social simulations with transformative uses, from interpersonal training to aiding global policy-making. However, recent studies indicate that generative agent behaviors often deviate from expert expectations and real-world data--a phenomenon we term the Behavior-Realism Gap. To address this, we introduce a theoretical framework called Persona-Environment Behavioral Alignment (PEBA), formulated as a distribution matching problem grounded in Lewin's behavior equation stating that behavior is a function of the person and their environment. Leveraging PEBA, we propose PersonaEvolve (PEvo), an LLM-based optimization algorithm that iteratively refines agent personas, implicitly aligning their collective behaviors with realistic expert benchmarks within a specified environmental context. We validate PEvo in an active shooter incident simulation we developed, achieving an 84% average reduction in distributional divergence compared to no steering and a 34% improvement over explicit instruction baselines. Results also show PEvo-refined personas generalize to novel, related simulation scenarios. Our method greatly enhances behavioral realism and reliability in high-stakes social simulations. More broadly, the PEBA-PEvo framework provides a principled approach to developing trustworthy LLM-driven social simulations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.