Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training Variational Quantum Circuits Using Particle Swarm Optimization (2509.15726v1)

Published 19 Sep 2025 in quant-ph, cs.ET, and cs.LG

Abstract: In this work, the Particle Swarm Optimization (PSO) algorithm has been used to train various Variational Quantum Circuits (VQCs). This approach is motivated by the fact that commonly used gradient-based optimization methods can suffer from the barren plateaus problem. PSO is a stochastic optimization technique inspired by the collective behavior of a swarm of birds. The dimension of the swarm, the number of iterations of the algorithm, and the number of trainable parameters can be set. In this study, PSO has been used to train the entire structure of VQCs, allowing it to select which quantum gates to apply, the target qubits, and the rotation angle, in case a rotation is chosen. The algorithm is restricted to choosing from four types of gates: Rx, Ry, Rz, and CNOT. The proposed optimization approach has been tested on various datasets of the MedMNIST, which is a collection of biomedical image datasets designed for image classification tasks. Performance has been compared with the results achieved by classical stochastic gradient descent applied to a predefined VQC. The results show that the PSO can achieve comparable or even better classification accuracy across multiple datasets, despite the PSO using a lower number of quantum gates than the VQC used with gradient descent optimization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.