Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Digital Twin-based Cooperative Autonomous Driving in Smart Intersections: A Multi-Agent Reinforcement Learning Approach (2509.15099v1)

Published 18 Sep 2025 in eess.SY and cs.SY

Abstract: Unsignalized intersections pose safety and efficiency challenges due to complex traffic flows and blind spots. In this paper, a digital twin (DT)-based cooperative driving system with roadside unit (RSU)-centric architecture is proposed for enhancing safety and efficiency at unsignalized intersections. The system leverages comprehensive bird-eye-view (BEV) perception to eliminate blind spots and employs a hybrid reinforcement learning (RL) framework combining offline pre-training with online fine-tuning. Specifically, driving policies are initially trained using conservative Q-learning (CQL) with behavior cloning (BC) on real datasets, then fine-tuned using multi-agent proximal policy optimization (MAPPO) with self-attention mechanisms to handle dynamic multi-agent coordination. The RSU implements real-time commands via vehicle-to-infrastructure (V2I) communications. Experimental results show that the proposed method yields failure rates below 0.03\% coordinating up to three connected autonomous vehicles (CAVs), significantly outperforming traditional methods. In addition, the system exhibits sub-linear computational scaling with inference times under 40 ms. Furthermore, it demonstrates robust generalization across diverse unsignalized intersection scenarios, indicating its practicality and readiness for real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.