Papers
Topics
Authors
Recent
Search
2000 character limit reached

Empathy-R1: A Chain-of-Empathy and Reinforcement Learning Framework for Long-Form Mental Health Support

Published 18 Sep 2025 in cs.CL and cs.AI | (2509.14851v1)

Abstract: Empathy is critical for effective mental health support, especially when addressing Long Counseling Texts (LCTs). However, existing LLMs often generate replies that are semantically fluent but lack the structured reasoning necessary for genuine psychological support, particularly in a Chinese context. To bridge this gap, we introduce Empathy-R1, a novel framework that integrates a Chain-of-Empathy (CoE) reasoning process with Reinforcement Learning (RL) to enhance response quality for LCTs. Inspired by cognitive-behavioral therapy, our CoE paradigm guides the model to sequentially reason about a help-seeker's emotions, causes, and intentions, making its thinking process both transparent and interpretable. Our framework is empowered by a new large-scale Chinese dataset, Empathy-QA, and a two-stage training process. First, Supervised Fine-Tuning instills the CoE's reasoning structure. Subsequently, RL, guided by a dedicated reward model, refines the therapeutic relevance and contextual appropriateness of the final responses. Experiments show that Empathy-R1 achieves strong performance on key automatic metrics. More importantly, human evaluations confirm its superiority, showing a clear preference over strong baselines and achieving a Win@1 rate of 44.30% on our new benchmark. By enabling interpretable and contextually nuanced responses, Empathy-R1 represents a significant advancement in developing responsible and genuinely beneficial AI for mental health support.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.