From hidden order to skyrmions: Quantum Hall states in an extended Hofstadter-Fermi-Hubbard model (2509.12184v1)
Abstract: The interplay between topology and strong interactions gives rise to a variety of exotic quantum phases, including fractional quantum Hall (FQH) states and their lattice analogs - fractional Chern insulators (FCIs). Such topologically ordered states host fractionalized excitations, which for spinful systems are often accompanied by ferromagnetism and skyrmions. Here, we study a Hofstadter-Hubbard model of spinful fermions on a square lattice, extended by nearest-neighbor interactions. Using large-scale density matrix renormalization group (DMRG) simulations, we demonstrate the emergence of a spin-polarized $\frac{1}{3}$-Laughlin-like FCI phase, characterized by a quantized many-body Chern number, a finite charge gap, and hidden off-diagonal long-range order. We further investigate the quantum Hall ferromagnet at $\nu=1$ and its skyrmionic excitations upon doping. In particular, we find that nearest-neighbor repulsion is sufficient to stabilize both particle- and hole-skyrmions in the ground state around $\nu=1$, whereas we do not find such textures around $\nu=\frac{1}{3}$. The diagnostic toolbox presented in this work, based on local densities, correlation functions, and spin-resolved observables, is directly applicable in quantum gas microscopy experiments. Our results open new pathways for experimental exploration of FCIs with spin textures in both ultracold atom and electronic systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.