Uniform Diophantine approximation on the plane for $β$-dynamical systems
Abstract: In this paper, we investigate the two-dimensional uniform Diophantine approximation in $\beta$-dynamical systems. Let $\beta_i > 1(i=1,2)$ be real numbers, and let $T_{\beta_i}$ denote the $\beta_i$-transformation defined on $[0, 1]$. For each $(x, y) \in[0,1]2$, we define the asymptotic approximation exponent $$ v_{\beta_1, \beta_2}(x, y)=\sup \left{0 \leq v<\infty: \begin{array}{l} T_{\beta_1}n x<\beta_1{-n v} \ T_{\beta_2}n y<\beta_2{-n v} \end{array} \text { for infinitely many } n \in \mathbb{N}\right} \text {, } $$ and the uniform approximation exponent $$ \hat{v}{\beta_1, \beta_2}(x, y)=\sup \left{0 \leq \hat{v}<\infty: \forall~ N \gg 1, \exists 1 \leq n \leq N \text { such that } \begin{array}{l} T{\beta_1}n x < \beta_1{-N \hat{v}} \ T_{\beta_2}n y < \beta_2{-N \hat{v}} \end{array}\right} . $$ We calculate the Hausdorff dimension of the intersection $$\left{(x, y) \in[0,1]2: \hat{v}{\beta_1, \beta_2}(x, y)=\hat{v} \text { and } v{\beta_1, \beta_2}(x, y)=v\right}$$ for any $\hat{v}$ and $v$ satisfying $\log _{\beta_2}{\beta_1}>\frac{\hat{v}}{v}(1+v)$. As a corollary, we establish a definite formula for the Hausdorff dimension of the level set of the uniform approximation exponent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.