Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Humanizing Automated Programming Feedback: Fine-Tuning Generative Models with Student-Written Feedback (2509.10647v1)

Published 12 Sep 2025 in cs.CY

Abstract: The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses that fail to accommodate the diverse needs of students and do not reflect the style of human-written feedback from tutors or peers. In this study, we explore learnersourcing as a means to fine-tune LLMs for generating feedback that is more similar to that written by humans, particularly peer students. Specifically, we asked students to act in the flipped role of a tutor and write feedback on programs containing bugs. We collected approximately 1,900 instances of student-written feedback on multiple programming problems and buggy programs. To establish a baseline for comparison, we analyzed a sample of 300 instances based on correctness, length, and how the bugs are described. Using this data, we fine-tuned open-access generative models, specifically Llama3 and Phi3. Our findings indicate that fine-tuning models on learnersourced data not only produces feedback that better matches the style of feedback written by students, but also improves accuracy compared to feedback generated through prompt engineering alone, even though some student-written feedback is incorrect. This surprising finding highlights the potential of student-centered fine-tuning to improve automated feedback systems in programming education.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.