Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Computable Measure of Suboptimality for Entropy-Regularised Variational Objectives (2509.10393v1)

Published 12 Sep 2025 in stat.CO and stat.ML

Abstract: Several emerging post-Bayesian methods target a probability distribution for which an entropy-regularised variational objective is minimised. This increased flexibility introduces a computational challenge, as one loses access to an explicit unnormalised density for the target. To mitigate this difficulty, we introduce a novel measure of suboptimality called 'gradient discrepancy', and in particular a 'kernel gradient discrepancy' (KGD) that can be explicitly computed. In the standard Bayesian context, KGD coincides with the kernel Stein discrepancy (KSD), and we obtain a novel charasterisation of KSD as measuring the size of a variational gradient. Outside this familiar setting, KGD enables novel sampling algorithms to be developed and compared, even when unnormalised densities cannot be obtained. To illustrate this point several novel algorithms are proposed, including a natural generalisation of Stein variational gradient descent, with applications to mean-field neural networks and prediction-centric uncertainty quantification presented. On the theoretical side, our principal contribution is to establish sufficient conditions for desirable properties of KGD, such as continuity and convergence control.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 11 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube