Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Online Robust Planning under Model Uncertainty: A Sample-Based Approach (2509.10162v1)

Published 12 Sep 2025 in cs.AI

Abstract: Online planning in Markov Decision Processes (MDPs) enables agents to make sequential decisions by simulating future trajectories from the current state, making it well-suited for large-scale or dynamic environments. Sample-based methods such as Sparse Sampling and Monte Carlo Tree Search (MCTS) are widely adopted for their ability to approximate optimal actions using a generative model. However, in practical settings, the generative model is often learned from limited data, introducing approximation errors that can degrade performance or lead to unsafe behaviors. To address these challenges, Robust MDPs (RMDPs) offer a principled framework for planning under model uncertainty, yet existing approaches are typically computationally intensive and not suited for real-time use. In this work, we introduce Robust Sparse Sampling (RSS), the first online planning algorithm for RMDPs with finite-sample theoretical performance guarantees. Unlike Sparse Sampling, which estimates the nominal value function, RSS computes a robust value function by leveraging the efficiency and theoretical properties of Sample Average Approximation (SAA), enabling tractable robust policy computation in online settings. RSS is applicable to infinite or continuous state spaces, and its sample and computational complexities are independent of the state space size. We provide theoretical performance guarantees and empirically show that RSS outperforms standard Sparse Sampling in environments with uncertain dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.