Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On a Restriction Problem of Hickman and Wright for the Parabola in $\mathbb{Z}/N\mathbb{Z}$ for Squarefree $N$ (2509.09885v1)

Published 11 Sep 2025 in math.CA, math.CO, and math.NT

Abstract: Hickman and Wright proved an $L2$ restriction estimate for the parabola $\Sigma$ in $\mathbb{Z}/N\mathbb{Z}$ of the form $$\left(\frac{1}{|\Sigma|}\sum\limits_{m\in\Sigma}|\widehat{f}(m)|2 \right){\frac{1}{2}}\leq C_\epsilon N\epsilon\cdot N{-1}\left(\sum\limits_{x\in (\mathbb{Z}/N\mathbb{Z})2}|f(x)|\frac{6}{5}\right)\frac{5}{6}$$ for all functions $f:(\mathbb{Z}/N\mathbb{Z})2\rightarrow \mathbb{C}$ and any $\epsilon>0$, and that this bound is sharp when $N$ has a large square factor, and especially for $N = p2$ for $p$ a prime. In contrast, Mockenhaupt and Tao proved in the special case $N = p$ the stronger estimate $$\left(\frac{1}{|\Sigma|}\sum\limits_{m\in\Sigma}|\widehat{f}(m)|2 \right){\frac{1}{2}}\leq C N{-1}\left(\sum\limits_{x\in (\mathbb{Z}/N\mathbb{Z})2}|f(x)|\frac{4}{3}\right)\frac{3}{4}.$$ We extend the Mockenhaupt-Tao bound to the case of squarefree $N$, proving $$\left(\frac{1}{|\Sigma|}\sum\limits_{m\in\Sigma}|\widehat{f}(m)|2 \right){\frac{1}{2}}\leq C_\epsilon N\epsilon\cdot N{-1}\left(\sum\limits_{x\in (\mathbb{Z}/N\mathbb{Z})2}|f(x)|\frac{4}{3}\right)\frac{3}{4},$$ and discuss applications of this result to uncertainty principles and signal recovery.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.