On a Restriction Problem of Hickman and Wright for the Parabola in $\mathbb{Z}/N\mathbb{Z}$ for Squarefree $N$ (2509.09885v1)
Abstract: Hickman and Wright proved an $L2$ restriction estimate for the parabola $\Sigma$ in $\mathbb{Z}/N\mathbb{Z}$ of the form $$\left(\frac{1}{|\Sigma|}\sum\limits_{m\in\Sigma}|\widehat{f}(m)|2 \right){\frac{1}{2}}\leq C_\epsilon N\epsilon\cdot N{-1}\left(\sum\limits_{x\in (\mathbb{Z}/N\mathbb{Z})2}|f(x)|\frac{6}{5}\right)\frac{5}{6}$$ for all functions $f:(\mathbb{Z}/N\mathbb{Z})2\rightarrow \mathbb{C}$ and any $\epsilon>0$, and that this bound is sharp when $N$ has a large square factor, and especially for $N = p2$ for $p$ a prime. In contrast, Mockenhaupt and Tao proved in the special case $N = p$ the stronger estimate $$\left(\frac{1}{|\Sigma|}\sum\limits_{m\in\Sigma}|\widehat{f}(m)|2 \right){\frac{1}{2}}\leq C N{-1}\left(\sum\limits_{x\in (\mathbb{Z}/N\mathbb{Z})2}|f(x)|\frac{4}{3}\right)\frac{3}{4}.$$ We extend the Mockenhaupt-Tao bound to the case of squarefree $N$, proving $$\left(\frac{1}{|\Sigma|}\sum\limits_{m\in\Sigma}|\widehat{f}(m)|2 \right){\frac{1}{2}}\leq C_\epsilon N\epsilon\cdot N{-1}\left(\sum\limits_{x\in (\mathbb{Z}/N\mathbb{Z})2}|f(x)|\frac{4}{3}\right)\frac{3}{4},$$ and discuss applications of this result to uncertainty principles and signal recovery.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.