2000 character limit reached
The Diophantine Frobenius Problem revisited (2509.08599v1)
Published 10 Sep 2025 in math.NT and math.CO
Abstract: Let $k\ge 2$ and $a_1, a_2, \cdots, a_k$ be positive integers with [ \gcd(a_1, a_2, \cdots, a_k)=1. ] It is proved that there exists a positive integer $G_{a_1, a_2, \cdots, a_k}$ such that every integer $n$ strictly greater than it can be represented as the form [ n=a_1x_1+a_2x_2+\cdots+a_kx_k, \quad (x_1, x_2, \cdots, x_k\in\mathbb{Z}{\ge 0},~\gcd(x_1, x_2, \cdots, x_k)=1). ] We then investigate the size of $G{a_1, a_2}$ explicitly. Our result strengthens the primality requirement of $x$'s in the classical Diophantine Frobenius Problem.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.