Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Aligning LLMs for the Classroom with Knowledge-Based Retrieval -- A Comparative RAG Study (2509.07846v1)

Published 9 Sep 2025 in cs.AI

Abstract: LLMs like ChatGPT are increasingly used in classrooms, but they often provide outdated or fabricated information that can mislead students. Retrieval Augmented Generation (RAG) improves reliability of LLMs by grounding responses in external resources. We investigate two accessible RAG paradigms, vector-based retrieval and graph-based retrieval to identify best practices for classroom question answering (QA). Existing comparative studies fail to account for pedagogical factors such as educational disciplines, question types, and practical deployment costs. Using a novel dataset, EduScopeQA, of 3,176 questions across academic subjects, we measure performance on various educational query types, from specific facts to broad thematic discussions. We also evaluate system alignment with a dataset of systematically altered textbooks that contradict the LLM's latent knowledge. We find that OpenAI Vector Search RAG (representing vector-based RAG) performs well as a low-cost generalist, especially for quick fact retrieval. On the other hand, GraphRAG Global excels at providing pedagogically rich answers to thematic queries, and GraphRAG Local achieves the highest accuracy with the dense, altered textbooks when corpus integrity is critical. Accounting for the 10-20x higher resource usage of GraphRAG (representing graph-based RAG), we show that a dynamic branching framework that routes queries to the optimal retrieval method boosts fidelity and efficiency. These insights provide actionable guidelines for educators and system designers to integrate RAG-augmented LLMs into learning environments effectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube