Normalized solutions for fractional Choquard equation with critical growth on bounded domain (2509.07618v1)
Abstract: In this work, we establish the multiplicity of positive solutions for the following critical fractional Choquard equation with a perturbation on the star-shaped bounded domain $$ \left{ \begin{array}{lr} (-\Delta)s u = \lambda u +\alpha|u|{p-2}u+ \left( \int\limits_{\Omega} \frac{|u(y)|{2{*}_{\mu ,s}}}{|x-y|^ \mu}\, dy\right) |u|{2{*}_{\mu ,s}-2}u\; \text{in} \; \Omega,\ u>0\; \text{in}\; \Omega,\; \ u = 0\; \text{in} \; \mathbb{R}{N}\backslash\Omega, \ \int_{\Omega}|u|2 dx=d, \end{array} \right. $$ where, $s\in(0,1), N>2s$, $\alpha\in \mathbb{R}$, $d>0$, $2<p<2*_s:=\frac{2N}{N-2s}$ and $2{*}_{\mu ,s}:=\frac{2N-\mu}{N-2s}$ represents fractional Hardy-Littlewood-Sobolev critical exponent. Using the minimization technique over an appropriate set and the uniform mountain pass theorem, we prove the existence of first and second solutions, respectively.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.