Normalized solution to Kirchhoff-fractional system involving critical Choquard nonlinearity (2509.07597v1)
Abstract: In this article, we explore the fractional Kirchhoff-Choquard system given by $$ \left{ \begin{array}{lr} (a+b\int_{\mathbb{R}N}|(-\Delta){\frac{s}{2}} u|2\;dx)(-\Delta)su=\lambda_1u+(I_{\mu}|v|{{2^{\mu,s}}})|u|{{2*{\mu,s}}-2}u +\alpha p (I_{\mu}|v|{q})|u|{p-2}u \;\text{in}\;\mathbb{R}N,\ (a+b\int_{\mathbb{R}N}|(-\Delta){\frac{s}{2}} v|2\;dx)(-\Delta)sv=\lambda_2v+ (I_{\mu}|u|{{2_{\mu,s}}})|v|{{2^_{\mu,s}}-2}u +\alpha q(I_{\mu}|u|{p})|v|{q-2}v \;\;\text{in}\;\mathbb{R}N,\ \int_{\mathbb{R}N}|u|2=d_12,\;\;\int_{\mathbb{R}N}|v|2=d_22. \end{array} \right. $$ where $N> 2s$, $s \in (0,1)$, $\mu \in (0, N)$, $\alpha \in\mathbb{R}$. Here, $I_{\mu}:\mathbb{R}N \to \mathbb{R}$ denotes the Riesz potential. We denote by $2_{\mu,}:=\frac{2N-\mu}{N}$ and $\frac{2N-\mu}{N-2s}:={2*_{\mu,s}}$, the lower and upper Hardy-Littlewood-Sobolev critical exponents, repectively, and assume that $2_{\mu,} < p,q< {2^{\mu,s}}$. Our primary focus is on the existence of normalized solutions for the case $\alpha>0$ in two scenarios: the $L2$ subcritical case characterized by $22{\mu,}<p + q < 4 + \frac{4s-2\mu}{N}$ and $L2$ supercritical associated with $4+\frac{8s-2\mu}{N}< p + q < 2{2^_{\mu,s}}$.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.