Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

City Sampling for Citizens' Assemblies (2509.07557v1)

Published 9 Sep 2025 in cs.GT and math.PR

Abstract: In citizens' assemblies, a group of constituents is randomly selected to weigh in on policy issues. We study a two-stage sampling problem faced by practitioners in countries such as Germany, in which constituents' contact information is stored at a municipal level. As a result, practitioners can only select constituents from a bounded number of cities ex post, while ensuring equal selection probability for constituents ex ante. We develop several algorithms for this problem. Although minimizing the number of contacted cities is NP-hard, we provide a pseudo-polynomial time algorithm and an additive 1-approximation, both based on separation oracles for a linear programming formulation. Recognizing that practical objectives go beyond minimizing city count, we further introduce a simple and more interpretable greedy algorithm, which additionally satisfies an ex-post monotonicity property and achieves an additive 2-approximation. Finally, we explore a notion of ex-post proportionality, for which we propose two practical algorithms: an optimal algorithm based on column generation and integer linear programming and a simple heuristic creating particularly transparent distributions. We evaluate these algorithms on data from Germany, and plan to deploy them in cooperation with a leading nonprofit organization in this space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube