Papers
Topics
Authors
Recent
2000 character limit reached

Super-LIO: A Robust and Efficient LiDAR-Inertial Odometry System with a Compact Mapping Strategy (2509.05723v1)

Published 6 Sep 2025 in cs.RO

Abstract: LiDAR-Inertial Odometry (LIO) is a foundational technique for autonomous systems, yet its deployment on resource-constrained platforms remains challenging due to computational and memory limitations. We propose Super-LIO, a robust LIO system that demands both high performance and accuracy, ideal for applications such as aerial robots and mobile autonomous systems. At the core of Super-LIO is a compact octo-voxel-based map structure, termed OctVox, that limits each voxel to eight fused subvoxels, enabling strict point density control and incremental denoising during map updates. This design enables a simple yet efficient and accurate map structure, which can be easily integrated into existing LIO frameworks. Additionally, Super-LIO designs a heuristic-guided KNN strategy (HKNN) that accelerates the correspondence search by leveraging spatial locality, further reducing runtime overhead. We evaluated the proposed system using four publicly available datasets and several self-collected datasets, totaling more than 30 sequences. Extensive testing on both X86 and ARM platforms confirms that Super-LIO offers superior efficiency and robustness, while maintaining competitive accuracy. Super-LIO processes each frame approximately 73% faster than SOTA, while consuming less CPU resources. The system is fully open-source and plug-and-play compatible with a wide range of LiDAR sensors and platforms. The implementation is available at: https://github.com/Liansheng-Wang/Super-LIO.git

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 29 likes about this paper.