Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Causal Debiasing Medical Multimodal Representation Learning with Missing Modalities (2509.05615v1)

Published 6 Sep 2025 in cs.LG and cs.AI

Abstract: Medical multimodal representation learning aims to integrate heterogeneous clinical data into unified patient representations to support predictive modeling, which remains an essential yet challenging task in the medical data mining community. However, real-world medical datasets often suffer from missing modalities due to cost, protocol, or patient-specific constraints. Existing methods primarily address this issue by learning from the available observations in either the raw data space or feature space, but typically neglect the underlying bias introduced by the data acquisition process itself. In this work, we identify two types of biases that hinder model generalization: missingness bias, which results from non-random patterns in modality availability, and distribution bias, which arises from latent confounders that influence both observed features and outcomes. To address these challenges, we perform a structural causal analysis of the data-generating process and propose a unified framework that is compatible with existing direct prediction-based multimodal learning methods. Our method consists of two key components: (1) a missingness deconfounding module that approximates causal intervention based on backdoor adjustment and (2) a dual-branch neural network that explicitly disentangles causal features from spurious correlations. We evaluated our method in real-world public and in-hospital datasets, demonstrating its effectiveness and causal insights.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.