Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reinforcement Learning with Anticipation: A Hierarchical Approach for Long-Horizon Tasks

Published 6 Sep 2025 in cs.LG | (2509.05545v1)

Abstract: Solving long-horizon goal-conditioned tasks remains a significant challenge in reinforcement learning (RL). Hierarchical reinforcement learning (HRL) addresses this by decomposing tasks into more manageable sub-tasks, but the automatic discovery of the hierarchy and the joint training of multi-level policies often suffer from instability and can lack theoretical guarantees. In this paper, we introduce Reinforcement Learning with Anticipation (RLA), a principled and potentially scalable framework designed to address these limitations. The RLA agent learns two synergistic models: a low-level, goal-conditioned policy that learns to reach specified subgoals, and a high-level anticipation model that functions as a planner, proposing intermediate subgoals on the optimal path to a final goal. The key feature of RLA is the training of the anticipation model, which is guided by a principle of value geometric consistency, regularized to prevent degenerate solutions. We present proofs that RLA approaches the globally optimal policy under various conditions, establishing a principled and convergent method for hierarchical planning and execution in long-horizon goal-conditioned tasks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.