Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum-Enhanced Multi-Task Learning with Learnable Weighting for Pharmacokinetic and Toxicity Prediction

Published 4 Sep 2025 in cs.LG and cs.AI | (2509.04601v1)

Abstract: Prediction for ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) plays a crucial role in drug discovery and development, accelerating the screening and optimization of new drugs. Existing methods primarily rely on single-task learning (STL), which often fails to fully exploit the complementarities between tasks. Besides, it requires more computational resources while training and inference of each task independently. To address these issues, we propose a new unified Quantum-enhanced and task-Weighted Multi-Task Learning (QW-MTL) framework, specifically designed for ADMET classification tasks. Built upon the Chemprop-RDKit backbone, QW-MTL adopts quantum chemical descriptors to enrich molecular representations with additional information about the electronic structure and interactions. Meanwhile, it introduces a novel exponential task weighting scheme that combines dataset-scale priors with learnable parameters to achieve dynamic loss balancing across tasks. To the best of our knowledge, this is the first work to systematically conduct joint multi-task training across all 13 Therapeutics Data Commons (TDC) classification benchmarks, using leaderboard-style data splits to ensure a standardized and realistic evaluation setting. Extensive experimental results show that QW-MTL significantly outperforms single-task baselines on 12 out of 13 tasks, achieving high predictive performance with minimal model complexity and fast inference, demonstrating the effectiveness and efficiency of multi-task molecular learning enhanced by quantum-informed features and adaptive task weighting.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.