Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Integrating Pruning with Quantization for Efficient Deep Neural Networks Compression (2509.04244v1)

Published 4 Sep 2025 in cs.NE

Abstract: Deep Neural Networks (DNNs) have achieved significant advances in a wide range of applications. However, their deployment on resource-constrained devices remains a challenge due to the large number of layers and parameters, which result in considerable computational and memory demands. To address this issue, pruning and quantization are two widely used compression techniques, commonly applied individually in most studies to reduce model size and enhance processing speed. Nevertheless, combining these two techniques can yield even greater compression benefits. Effectively integrating pruning and quantization to harness their complementary advantages poses a challenging task, primarily due to their potential impact on model accuracy and the complexity of jointly optimizing both processes. In this paper, we propose two approaches that integrate similarity-based filter pruning with Adaptive Power-of-Two (APoT) quantization to achieve higher compression efficiency while preserving model accuracy. In the first approach, pruning and quantization are applied simultaneously during training. In the second approach, pruning is performed first to remove less important parameters, followed by quantization of the pruned model using low-bit representations. Experimental results demonstrate that our proposed approaches achieve effective model compression with minimal accuracy degradation, making them well-suited for deployment on devices with limited computational resources.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.