Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Meta-Policy Reflexion: Reusable Reflective Memory and Rule Admissibility for Resource-Efficient LLM Agent (2509.03990v1)

Published 4 Sep 2025 in cs.AI

Abstract: LLM agents achieve impressive single-task performance but commonly exhibit repeated failures, inefficient exploration, and limited cross-task adaptability. Existing reflective strategies (e.g., Reflexion, ReAct) improve per-episode behavior but typically produce ephemeral, task-specific traces that are not reused across tasks. Reinforcement-learning based alternatives can produce transferable policies but require substantial parameter updates and compute. In this work we introduce Meta-Policy Reflexion (MPR): a hybrid framework that consolidates LLM-generated reflections into a structured, predicate-like Meta-Policy Memory (MPM) and applies that memory at inference time through two complementary mechanisms soft memory-guided decoding and hard rule admissibility checks(HAC). MPR (i) externalizes reusable corrective knowledge without model weight updates, (ii) enforces domain constraints to reduce unsafe or invalid actions, and (iii) retains the adaptability of language-based reflection. We formalize the MPM representation, present algorithms for update and decoding, and validate the approach in a text-based agent environment following the experimental protocol described in the provided implementation (AlfWorld-based). Empirical results reported in the supplied material indicate consistent gains in execution accuracy and robustness when compared to Reflexion baselines; rule admissibility further improves stability. We analyze mechanisms that explain these gains, discuss scalability and failure modes, and outline future directions for multimodal and multi?agent extensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube