Solutions for Mitotic Figure Detection and Atypical Classification in MIDOG 2025 (2509.02597v1)
Abstract: Deep learning has driven significant advances in mitotic figure analysis within computational pathology. In this paper, we present our approach to the Mitosis Domain Generalization (MIDOG) 2025 Challenge, which consists of two distinct tasks, i.e., mitotic figure detection and atypical mitosis classification. For the mitotic figure detection task, we propose a two-stage detection-classification framework that first localizes candidate mitotic figures and subsequently refines the predictions using a dedicated classification module. For the atypical mitosis classification task, we employ an ensemble strategy that integrates predictions from multiple state-of-the-art deep learning architectures to improve robustness and accuracy. Extensive experiments demonstrate the effectiveness of our proposed methods across both tasks.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.