Papers
Topics
Authors
Recent
2000 character limit reached

The Name-Free Gap: Policy-Aware Stylistic Control in Music Generation (2509.00654v1)

Published 31 Aug 2025 in cs.SD, cs.AI, cs.LG, cs.MM, and eess.AS

Abstract: Text-to-music models capture broad attributes such as instrumentation or mood, but fine-grained stylistic control remains an open challenge. Existing stylization methods typically require retraining or specialized conditioning, which complicates reproducibility and limits policy compliance when artist names are restricted. We study whether lightweight, human-readable modifiers sampled from a LLM can provide a policy-robust alternative for stylistic control. Using MusicGen-small, we evaluate two artists: Billie Eilish (vocal pop) and Ludovico Einaudi (instrumental piano). For each artist, we use fifteen reference excerpts and evaluate matched seeds under three conditions: baseline prompts, artist-name prompts, and five descriptor sets. All prompts are generated using a LLM. Evaluation uses both VGGish and CLAP embeddings with distributional and per-clip similarity measures, including a new min-distance attribution metric. Results show that artist names are the strongest control signal across both artists, while name-free descriptors recover much of this effect. This highlights that existing safeguards such as the restriction of artist names in music generation prompts may not fully prevent style imitation. Cross-artist transfers reduce alignment, showing that descriptors encode targeted stylistic cues. We also present a descriptor table across ten contemporary artists to illustrate the breadth of the tokens. Together these findings define the name-free gap, the controllability difference between artist-name prompts and policy-compliant descriptors, shown through a reproducible evaluation protocol for prompt-level controllability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.