Papers
Topics
Authors
Recent
2000 character limit reached

Robust Detection of Synthetic Tabular Data under Schema Variability (2509.00092v1)

Published 27 Aug 2025 in cs.LG and cs.DB

Abstract: The rise of powerful generative models has sparked concerns over data authenticity. While detection methods have been extensively developed for images and text, the case of tabular data, despite its ubiquity, has been largely overlooked. Yet, detecting synthetic tabular data is especially challenging due to its heterogeneous structure and unseen formats at test time. We address the underexplored task of detecting synthetic tabular data in the wild, where tables have variable and previously unseen schemas. We introduce a novel datum-wise transformer architecture that significantly outperforms the only previously published baseline, improving both AUC and accuracy by 7 points. By incorporating a table-adaptation component, our model gains an additional 7 accuracy points, demonstrating enhanced robustness. This work provides the first strong evidence that detecting synthetic tabular data in real-world conditions is not only feasible, but can be done with high reliability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.