Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Recabilities of Foundation Models: A Multi-Domain, Multi-Dataset Benchmark

Published 29 Aug 2025 in cs.IR | (2508.21354v1)

Abstract: Comprehensive evaluation of the recommendation capabilities of existing foundation models across diverse datasets and domains is essential for advancing the development of recommendation foundation models. In this study, we introduce RecBench-MD, a novel and comprehensive benchmark designed to assess the recommendation abilities of foundation models from a zero-resource, multi-dataset, and multi-domain perspective. Through extensive evaluations of 19 foundation models across 15 datasets spanning 10 diverse domains -- including e-commerce, entertainment, and social media -- we identify key characteristics of these models in recommendation tasks. Our findings suggest that in-domain fine-tuning achieves optimal performance, while cross-dataset transfer learning provides effective practical support for new recommendation scenarios. Additionally, we observe that multi-domain training significantly enhances the adaptability of foundation models. All code and data have been publicly released to facilitate future research.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.