Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning for Optimizing Large Qubit Array based Quantum Sensor Circuits (2508.21253v1)

Published 28 Aug 2025 in quant-ph and cs.AI

Abstract: As the number of qubits in a sensor increases, the complexity of designing and controlling the quantum circuits grows exponentially. Manually optimizing these circuits becomes infeasible. Optimizing entanglement distribution in large-scale quantum circuits is critical for enhancing the sensitivity and efficiency of quantum sensors [5], [6]. This paper presents an engineering integration of reinforcement learning with tensor-network-based simulation (MPS) for scalable circuit optimization for optimizing quantum sensor circuits with up to 60 qubits. To enable efficient simulation and scalability, we adopt tensor network methods, specifically the Matrix Product State (MPS) representation, instead of traditional state vector or density matrix approaches. Our reinforcement learning agent learns to restructure circuits to maximize Quantum Fisher Information (QFI) and entanglement entropy while reducing gate counts and circuit depth. Experimental results show consistent improvements, with QFI values approaching 1, entanglement entropy in the 0.8-1.0 range, and up to 90% reduction in depth and gate count. These results highlight the potential of combining quantum machine learning and tensor networks to optimize complex quantum circuits under realistic constraints.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.