Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Machine Learning for Optimizing Entanglement Distribution in Quantum Sensor Circuits (2508.21252v1)

Published 28 Aug 2025 in quant-ph and cs.AI

Abstract: In the rapidly evolving field of quantum computing, optimizing quantum circuits for specific tasks is crucial for enhancing performance and efficiency. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology. The field is expected to provide new opportunities, especially regarding high sensitivity and precision. Entanglement is one of the key factors in achieving high sensitivity and measurement precision [3]. This paper presents a novel approach utilizing quantum machine learning techniques to optimize entanglement distribution in quantum sensor circuits. By leveraging reinforcement learning within a quantum environment, we aim to optimize the entanglement layout to maximize Quantum Fisher Information (QFI) and entanglement entropy, which are key indicators of a quantum system's sensitivity and coherence, while minimizing circuit depth and gate counts. Our implementation, based on Qiskit, integrates noise models and error mitigation strategies to simulate realistic quantum environments. The results demonstrate significant improvements in circuit performance and sensitivity, highlighting the potential of machine learning in quantum circuit optimization by measuring high QFI and entropy in the range of 0.84-1.0 with depth and gate count reduction by 20-86%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.