Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

WaveLLDM: Design and Development of a Lightweight Latent Diffusion Model for Speech Enhancement and Restoration (2508.21153v1)

Published 28 Aug 2025 in cs.SD, cs.AI, and eess.AS

Abstract: High-quality audio is essential in a wide range of applications, including online communication, virtual assistants, and the multimedia industry. However, degradation caused by noise, compression, and transmission artifacts remains a major challenge. While diffusion models have proven effective for audio restoration, they typically require significant computational resources and struggle to handle longer missing segments. This study introduces WaveLLDM (Wave Lightweight Latent Diffusion Model), an architecture that integrates an efficient neural audio codec with latent diffusion for audio restoration and denoising. Unlike conventional approaches that operate in the time or spectral domain, WaveLLDM processes audio in a compressed latent space, reducing computational complexity while preserving reconstruction quality. Empirical evaluations on the Voicebank+DEMAND test set demonstrate that WaveLLDM achieves accurate spectral reconstruction with low Log-Spectral Distance (LSD) scores (0.48 to 0.60) and good adaptability to unseen data. However, it still underperforms compared to state-of-the-art methods in terms of perceptual quality and speech clarity, with WB-PESQ scores ranging from 1.62 to 1.71 and STOI scores between 0.76 and 0.78. These limitations are attributed to suboptimal architectural tuning, the absence of fine-tuning, and insufficient training duration. Nevertheless, the flexible architecture that combines a neural audio codec and latent diffusion model provides a strong foundation for future development.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: