Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

EvaDrive: Evolutionary Adversarial Policy Optimization for End-to-End Autonomous Driving (2508.09158v1)

Published 5 Aug 2025 in cs.LG and cs.AI

Abstract: Autonomous driving faces significant challenges in achieving human-like iterative decision-making, which continuously generates, evaluates, and refines trajectory proposals. Current generation-evaluation frameworks isolate trajectory generation from quality assessment, preventing iterative refinement essential for planning, while reinforcement learning methods collapse multi-dimensional preferences into scalar rewards, obscuring critical trade-offs and yielding scalarization bias.To overcome these issues, we present EvaDrive, a novel multi-objective reinforcement learning framework that establishes genuine closed-loop co-evolution between trajectory generation and evaluation via adversarial optimization. EvaDrive frames trajectory planning as a multi-round adversarial game. In this game, a hierarchical generator continuously proposes candidate paths by combining autoregressive intent modeling for temporal causality with diffusion-based refinement for spatial flexibility. These proposals are then rigorously assessed by a trainable multi-objective critic that explicitly preserves diverse preference structures without collapsing them into a single scalarization bias.This adversarial interplay, guided by a Pareto frontier selection mechanism, enables iterative multi-round refinement, effectively escaping local optima while preserving trajectory diversity.Extensive experiments on NAVSIM and Bench2Drive benchmarks demonstrate SOTA performance, achieving 94.9 PDMS on NAVSIM v1 (surpassing DiffusionDrive by 6.8, DriveSuprim by 5.0, and TrajHF by 0.9) and 64.96 Driving Score on Bench2Drive. EvaDrive generates diverse driving styles via dynamic weighting without external preference data, introducing a closed-loop adversarial framework for human-like iterative decision-making, offering a novel scalarization-free trajectory optimization approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.