Papers
Topics
Authors
Recent
2000 character limit reached

Likelihood Ratio Tests by Kernel Gaussian Embedding (2508.07982v1)

Published 11 Aug 2025 in stat.ML, cs.LG, and stat.ME

Abstract: We propose a novel kernel-based nonparametric two-sample test, employing the combined use of kernel mean and kernel covariance embedding. Our test builds on recent results showing how such combined embeddings map distinct probability measures to mutually singular Gaussian measures on the kernel's RKHS. Leveraging this result, we construct a test statistic based on the relative entropy between the Gaussian embeddings, i.e.\ the likelihood ratio. The likelihood ratio is specifically tailored to detect equality versus singularity of two Gaussians, and satisfies a ``$0/\infty$" law, in that it vanishes under the null and diverges under the alternative. To implement the test in finite samples, we introduce a regularised version, calibrated by way of permutation. We prove consistency, establish uniform power guarantees under mild conditions, and discuss how our framework unifies and extends prior approaches based on spectrally regularized MMD. Empirical results on synthetic and real data demonstrate remarkable gains in power compared to state-of-the-art methods, particularly in high-dimensional and weak-signal regimes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.

alphaXiv