Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Dynamic Scenes in Ego Centric 4D Point Clouds (2508.07251v1)

Published 10 Aug 2025 in cs.CV

Abstract: Understanding dynamic 4D scenes from an egocentric perspective-modeling changes in 3D spatial structure over time-is crucial for human-machine interaction, autonomous navigation, and embodied intelligence. While existing egocentric datasets contain dynamic scenes, they lack unified 4D annotations and task-driven evaluation protocols for fine-grained spatio-temporal reasoning, especially on motion of objects and human, together with their interactions. To address this gap, we introduce EgoDynamic4D, a novel QA benchmark on highly dynamic scenes, comprising RGB-D video, camera poses, globally unique instance masks, and 4D bounding boxes. We construct 927K QA pairs accompanied by explicit Chain-of-Thought (CoT), enabling verifiable, step-by-step spatio-temporal reasoning. We design 12 dynamic QA tasks covering agent motion, human-object interaction, trajectory prediction, relation understanding, and temporal-causal reasoning, with fine-grained, multidimensional metrics. To tackle these tasks, we propose an end-to-end spatio-temporal reasoning framework that unifies dynamic and static scene information, using instance-aware feature encoding, time and camera encoding, and spatially adaptive down-sampling to compress large 4D scenes into token sequences manageable by LLMs. Experiments on EgoDynamic4D show that our method consistently outperforms baselines, validating the effectiveness of multimodal temporal modeling for egocentric dynamic scene understanding.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.