Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

PureSample: Neural Materials Learned by Sampling Microgeometry (2508.07240v1)

Published 10 Aug 2025 in cs.GR

Abstract: Traditional physically-based material models rely on analytically derived bidirectional reflectance distribution functions (BRDFs), typically by considering statistics of micro-primitives such as facets, flakes, or spheres, sometimes combined with multi-bounce interactions such as layering and multiple scattering. These derivations are often complex and model-specific, and typically consider a statistical aggregate of a large surface area, ignoring spatial variation. Once an analytic BRDF's evaluation is defined, one still needs to design an importance sampling method for it, and a way to evaluate the pdf of that sampling distribution, requiring further model-specific derivations. We present PureSample: a novel neural BRDF representation that allows learning a material's behavior purely by sampling forward random walks on the microgeometry, which is usually straightforward to implement. Our representation allows for efficient importance sampling, pdf evaluation, and BRDF evaluation, for homogeneous as well as spatially varying materials. We achieve this by two learnable components: first, the sampling distribution is modeled using a flow matching neural network, which allows both importance sampling and pdf evaluation; second, we introduce a view-dependent albedo term, captured by a lightweight neural network, which allows for converting a scalar pdf value to a colored BRDF value for any pair of view and light directions. We demonstrate PureSample on challenging materials, including multi-layered materials, multiple-scattering microfacet materials, and various other microstructures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.