Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Block encoding the 3D heterogeneous Poisson equation with application to fracture flow (2508.07125v1)

Published 10 Aug 2025 in quant-ph and cs.DM

Abstract: Quantum linear system (QLS) algorithms offer the potential to solve large-scale linear systems exponentially faster than classical methods. However, applying QLS algorithms to real-world problems remains challenging due to issues such as state preparation, data loading, and efficient information extraction. In this work, we study the feasibility of applying QLS algorithms to solve discretized three-dimensional heterogeneous Poisson equations, with specific examples relating to groundwater flow through geologic fracture networks. We explicitly construct a block encoding for the 3D heterogeneous Poisson matrix by leveraging the sparse local structure of the discretized operator. While classical solvers benefit from preconditioning, we show that block encoding the system matrix and preconditioner separately does not improve the effective condition number that dominates the QLS runtime. This differs from classical approaches where the preconditioner and the system matrix can often be implemented independently. Nevertheless, due to the structure of the problem in three dimensions, the quantum algorithm achieves a runtime of $O(N{2/3} \ \text{polylog } N \cdot \log(1/\epsilon))$, outperforming the best classical methods (with runtimes of $O(N \log N \cdot \log(1/\epsilon))$) and offering exponential memory savings. These results highlight both the promise and limitations of QLS algorithms for practical scientific computing, and point to effective condition number reduction as a key barrier in achieving quantum advantages.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.