Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Quantum Computer Amenable Sparse Matrix Equation Solver (2112.02600v3)

Published 5 Dec 2021 in quant-ph

Abstract: Quantum computation offers a promising alternative to classical computing methods in many areas of numerical science, with algorithms that make use of the unique way in which quantum computers store and manipulate data often achieving dramatic improvements in performance over their classical counterparts. The potential efficiency of quantum computers is particularly important for numerical simulations, where the capabilities of classical computing systems are often insufficient for the analysis of real-world problems. In this work, we study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure. We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation. This unitary, which we have adopted from research in the area of quantum walks, has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware for any well-conditioned system. The procedure is most useful for sparse matrix equations, as it allows for the inverse of a matrix to be applied with $\mathcal{O}\left(N_{nz}\log\left(N\right)\right)$ complexity, where $N$ is the number of unknowns, and $N_{nz}$ is the total number of nonzero elements in the system matrix. This efficiency is independent of the matrix structure, and hence the quantum procedure can outperform classical methods for many common system types. We show this using the example of sparse approximate inverse (SPAI) preconditioning, which involves the application of matrix inverses for matrices with $N_{nz}=\mathcal{O}\left(N\right)$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.