Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Coverage correlation: detecting singular dependencies between random variables (2508.06402v1)

Published 8 Aug 2025 in stat.ME, math.ST, and stat.TH

Abstract: We introduce the coverage correlation coefficient, a novel nonparametric measure of statistical association designed to quantifies the extent to which two random variables have a joint distribution concentrated on a singular subset with respect to the product of the marginals. Our correlation statistic consistently estimates an $f$-divergence between the joint distribution and the product of the marginals, which is 0 if and only if the variables are independent and 1 if and only if the copula is singular. Using Monge--Kantorovich ranks, the coverage correlation naturally extends to measure association between random vectors. It is distribution-free, admits an analytically tractable asymptotic null distribution, and can be computed efficiently, making it well-suited for detecting complex, potentially nonlinear associations in large-scale pairwise testing.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.