Decentralized Optimization via RC-ALADIN with Efficient Quantized Communication (2508.06197v1)
Abstract: In this paper, we investigate the problem of decentralized consensus optimization over directed graphs with limited communication bandwidth. We introduce a novel decentralized optimization algorithm that combines the Reduced Consensus Augmented Lagrangian Alternating Direction Inexact Newton (RC-ALADIN) method with a finite time quantized coordination protocol, enabling quantized information exchange among nodes. Assuming the nodes' local objective functions are $\mu$-strongly convex and simply smooth, we establish global convergence at a linear rate to a neighborhood of the optimal solution, with the neighborhood size determined by the quantization level. Additionally, we show that the same convergence result also holds for the case where the local objective functions are convex and $L$-smooth. Numerical experiments demonstrate that our proposed algorithm compares favorably against algorithms in the current literature while exhibiting communication efficient operation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.