Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hierarchical Event Memory for Accurate and Low-latency Online Video Temporal Grounding (2508.04546v1)

Published 6 Aug 2025 in cs.CV

Abstract: In this paper, we tackle the task of online video temporal grounding (OnVTG), which requires the model to locate events related to a given text query within a video stream. Unlike regular video temporal grounding, OnVTG requires the model to make predictions without observing future frames. As online videos are streaming inputs and can go on indefinitely, it is impractical and inefficient to store all historical inputs. The existing OnVTG models employ memory to store recent historical video frame features and predict scores indicating whether the current frame corresponds to the start or end time of the target event. However, these methods lack effective event modeling and cannot retain long-term historical information, leading to low performance. To tackle these challenges, we propose a hierarchical event memory for OnVTG. We propose an event-based OnVTG framework that makes predictions based on event proposals that model event-level information with various durations. To preserve historically valuable event information, we introduce a hierarchical event memory that retains historical events, allowing the model to access both recent and long-term information. To enable the real-time prediction, we further propose a future prediction branch that predicts whether the target event will occur shortly and further regresses the start time of the event. We achieve state-of-the-art performance on the TACoS, ActivityNet Captions, and MAD datasets. Code is available at https://github.com/minghangz/OnVTG.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.