Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Universality for fluctuations of counting statistics of random normal matrices (2508.04386v1)

Published 6 Aug 2025 in math.PR, math-ph, and math.MP

Abstract: We consider the fluctuations of the number of eigenvalues of $n\times n$ random normal matrices depending on a potential $Q$ in a given set $A$. These eigenvalues are known to form a determinantal point process, and are known to accumulate on a compact set called the droplet under mild conditions on $Q$. When $A$ is a Borel set strictly inside the droplet, we show that the variance of the number of eigenvalues $N_A{(n)}$ in $A$ has a limiting behavior given by \begin{align*} \lim_{n\to\infty} \frac1{\sqrt n}\operatorname{Var } N_A{(n)} = \frac{1}{2\pi\sqrt\pi}\int_{\partial_* A} \sqrt{\Delta Q(z)} \, d\mathcal H1(z), \end{align*} where $\partial_* A$ is the measure theoretic boundary of $A$, $d\mathcal H1(z)$ denotes the one-dimensional Hausdorff measure, and $\Delta = \partial_z \overline{\partial_z}$. We also consider the case where $A$ is a microscopic dilation of the droplet and fully generalize a result by Akemann, Byun and Ebke for arbitrary potentials. In this result $d\mathcal H1(z)$ is replaced by the harmonic measure at $\infty$ associated with the exterior of the droplet. This second result is proved by strengthening results due to Hedenmalm-Wennman and Ameur-Cronvall on the asymptotic behavior of the associated correlation kernel near the droplet boundary.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube