Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

RobustGS: Unified Boosting of Feedforward 3D Gaussian Splatting under Low-Quality Conditions (2508.03077v1)

Published 5 Aug 2025 in cs.CV

Abstract: Feedforward 3D Gaussian Splatting (3DGS) overcomes the limitations of optimization-based 3DGS by enabling fast and high-quality reconstruction without the need for per-scene optimization. However, existing feedforward approaches typically assume that input multi-view images are clean and high-quality. In real-world scenarios, images are often captured under challenging conditions such as noise, low light, or rain, resulting in inaccurate geometry and degraded 3D reconstruction. To address these challenges, we propose a general and efficient multi-view feature enhancement module, RobustGS, which substantially improves the robustness of feedforward 3DGS methods under various adverse imaging conditions, enabling high-quality 3D reconstruction. The RobustGS module can be seamlessly integrated into existing pretrained pipelines in a plug-and-play manner to enhance reconstruction robustness. Specifically, we introduce a novel component, Generalized Degradation Learner, designed to extract generic representations and distributions of multiple degradations from multi-view inputs, thereby enhancing degradation-awareness and improving the overall quality of 3D reconstruction. In addition, we propose a novel semantic-aware state-space model. It first leverages the extracted degradation representations to enhance corrupted inputs in the feature space. Then, it employs a semantic-aware strategy to aggregate semantically similar information across different views, enabling the extraction of fine-grained cross-view correspondences and further improving the quality of 3D representations. Extensive experiments demonstrate that our approach, when integrated into existing methods in a plug-and-play manner, consistently achieves state-of-the-art reconstruction quality across various types of degradations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.