Papers
Topics
Authors
Recent
2000 character limit reached

Defending Against Knowledge Poisoning Attacks During Retrieval-Augmented Generation (2508.02835v1)

Published 4 Aug 2025 in cs.LG and cs.IR

Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to boost the capabilities of LLMs by incorporating external, up-to-date knowledge sources. However, this introduces a potential vulnerability to knowledge poisoning attacks, where attackers can compromise the knowledge source to mislead the generation model. One such attack is the PoisonedRAG in which the injected adversarial texts steer the model to generate an attacker-chosen response to a target question. In this work, we propose novel defense methods, FilterRAG and ML-FilterRAG, to mitigate the PoisonedRAG attack. First, we propose a new property to uncover distinct properties to differentiate between adversarial and clean texts in the knowledge data source. Next, we employ this property to filter out adversarial texts from clean ones in the design of our proposed approaches. Evaluation of these methods using benchmark datasets demonstrate their effectiveness, with performances close to those of the original RAG systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com