Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Theory and Practice of GRPO: A Trajectory-Corrected Approach with Fast Convergence (2508.02833v2)

Published 4 Aug 2025 in cs.LG

Abstract: Group Relative Policy Optimization (GRPO), recently proposed by DeepSeek, is a critic-free reinforcement learning algorithm for fine tuning LLMs. It replaces the value function in Proximal Policy Optimization (PPO) with group normalized rewards, while retaining PPO style token level importance sampling based on an old policy. We show that GRPO update rule in fact estimates the policy gradient at the old policy rather than the current one. However, since the old policy is refreshed every few steps, the discrepancy between the two remains small limiting the impact of this bias in practice. We validate this through an ablation study in which importance sampling is entirely removed, and updates are instead performed using the gradient estimated at a fixed old policy across multiple optimization steps. Remarkably, this simplification results in performance comparable to standard GRPO. Motivated by these findings, we propose a new algorithm: Trajectory level Importance Corrected GRPO (TIC GRPO). TIC GRPO replaces token level importance ratios with a single trajectory level probability ratio, yielding an unbiased estimate of the current policy gradient while preserving the critic free structure. Furthermore, we present the first theoretical convergence analysis for GRPO style methods, covering both the original GRPO and our proposed variant.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube