Papers
Topics
Authors
Recent
2000 character limit reached

A Plug-and-Play Multi-Criteria Guidance for Diverse In-Betweening Human Motion Generation (2508.01590v1)

Published 3 Aug 2025 in cs.GR and cs.CV

Abstract: In-betweening human motion generation aims to synthesize intermediate motions that transition between user-specified keyframes. In addition to maintaining smooth transitions, a crucial requirement of this task is to generate diverse motion sequences. It is still challenging to maintain diversity, particularly when it is necessary for the motions within a generated batch sampling to differ meaningfully from one another due to complex motion dynamics. In this paper, we propose a novel method, termed the Multi-Criteria Guidance with In-Betweening Motion Model (MCG-IMM), for in-betweening human motion generation. A key strength of MCG-IMM lies in its plug-and-play nature: it enhances the diversity of motions generated by pretrained models without introducing additional parameters This is achieved by providing a sampling process of pretrained generative models with multi-criteria guidance. Specifically, MCG-IMM reformulates the sampling process of pretrained generative model as a multi-criteria optimization problem, and introduces an optimization process to explore motion sequences that satisfy multiple criteria, e.g., diversity and smoothness. Moreover, our proposed plug-and-play multi-criteria guidance is compatible with different families of generative models, including denoised diffusion probabilistic models, variational autoencoders, and generative adversarial networks. Experiments on four popular human motion datasets demonstrate that MCG-IMM consistently state-of-the-art methods in in-betweening motion generation task.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.