Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Geometric post-Lie deformations of post-Lie algebras and regularity structures (2508.01560v1)

Published 3 Aug 2025 in math.AC, math.AP, math.DG, math.PR, and math.RA

Abstract: In order to derive a class of geometric-type deformations of post-Lie algebras, we first extend the geometrical notions of torsion and curvature for a general bilinear operation on a Lie algebra, then we derive compatibility conditions which will ensure that the post-Lie structure remains preserved. This type of deformation applies in particular to the post-Lie algebra introduced in arXiv:2306.02484v3 in the context of regularity structures theory. We use this deformation to derive a pre-Lie structure for the regularity structures approach given in arXiv:2103.04187v4, which is isomorphic to the post-Lie algebra studied in arXiv:2306.02484v3 at the level of their associated Hopf algebras. In the case of sections of smooth vector bundles of a finite-dimensional manifold, this deformed structure contains also, as a subalgebra, the post-Lie algebra structure introduced in arXiv:1203.4738v3 in the geometrical context of moving frames.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.