Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

SPENCER: Self-Adaptive Model Distillation for Efficient Code Retrieval (2508.00546v1)

Published 1 Aug 2025 in cs.SE and cs.AI

Abstract: Code retrieval aims to provide users with desired code snippets based on users' natural language queries. With the development of deep learning technologies, adopting pre-trained models for this task has become mainstream. Considering the retrieval efficiency, most of the previous approaches adopt a dual-encoder for this task, which encodes the description and code snippet into representation vectors, respectively. However, the model structure of the dual-encoder tends to limit the model's performance, since it lacks the interaction between the code snippet and description at the bottom layer of the model during training. To improve the model's effectiveness while preserving its efficiency, we propose a framework, which adopts Self-AdaPtive Model Distillation for Efficient CodE Retrieval, named SPENCER. SPENCER first adopts the dual-encoder to narrow the search space and then adopts the cross-encoder to improve accuracy. To improve the efficiency of SPENCER, we propose a novel model distillation technique, which can greatly reduce the inference time of the dual-encoder while maintaining the overall performance. We also propose a teaching assistant selection strategy for our model distillation, which can adaptively select the suitable teaching assistant models for different pre-trained models during the model distillation to ensure the model performance. Extensive experiments demonstrate that the combination of dual-encoder and cross-encoder improves overall performance compared to solely dual-encoder-based models for code retrieval. Besides, our model distillation technique retains over 98% of the overall performance while reducing the inference time of the dual-encoder by 70%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube