Papers
Topics
Authors
Recent
2000 character limit reached

Transforming Credit Risk Analysis: A Time-Series-Driven ResE-BiLSTM Framework for Post-Loan Default Detection

Published 1 Aug 2025 in cs.LG | (2508.00415v1)

Abstract: Prediction of post-loan default is an important task in credit risk management, and can be addressed by detection of financial anomalies using machine learning. This study introduces a ResE-BiLSTM model, using a sliding window technique, and is evaluated on 44 independent cohorts from the extensive Freddie Mac US mortgage dataset, to improve prediction performance. The ResE-BiLSTM is compared with five baseline models: Long Short-Term Memory (LSTM), BiLSTM, Gated Recurrent Units (GRU), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), across multiple metrics, including Accuracy, Precision, Recall, F1, and AUC. An ablation study was conducted to evaluate the contribution of individual components in the ResE-BiLSTM architecture. Additionally, SHAP analysis was employed to interpret the underlying features the model relied upon for its predictions. Experimental results demonstrate that ResE-BiLSTM achieves superior predictive performance compared to baseline models, underscoring its practical value and applicability in real-world scenarios.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.