Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cheng's eigenvalue comparison on metric measure spaces and applications (2507.23671v1)

Published 31 Jul 2025 in math.SP, hep-th, math.DG, and math.MG

Abstract: Using the localization technique, we prove a sharp upper bound on the first Dirichlet eigenvalue of metric balls in essentially non-branching $\mathsf{CD}{\star}(K,N)$ spaces. This extends a celebrated result of Cheng to the non-smooth setting of metric measure spaces satisfying Ricci curvature lower bounds in a synthetic sense, via optimal transport. A rigidity statement is also provided for $\mathsf{RCD}{\star}(K,N)$ spaces. We then present some mathematical and physical applications: in the former, we obtain an upper bound on the $j{th}$ Neumann eigenvalue in essentially non-branching $\mathsf{CD}{\star}(K,N)$ spaces and a bound on the essential spectrum in non-compact $\mathsf{RCD}{\star}(K,N)$ spaces; in the latter, the eigenvalue bounds correspond to general upper bounds on the masses of the spin-2 Kaluza-Klein excitations around general warped compactifications of higher-dimensional theories of gravity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube