Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HLSDebugger: Identification and Correction of Logic Bugs in HLS Code with LLM Solutions (2507.21485v1)

Published 29 Jul 2025 in cs.SE and cs.AI

Abstract: High-level synthesis (HLS) accelerates hardware design by enabling the automatic translation of high-level descriptions into efficient hardware implementations. However, debugging HLS code is a challenging and labor-intensive task, especially for novice circuit designers or software engineers without sufficient hardware domain knowledge. The recent emergence of LLMs is promising in automating the HLS debugging process. Despite the great potential, three key challenges persist when applying LLMs to HLS logic debugging: 1) High-quality circuit data for training LLMs is scarce, posing a significant challenge. 2) Debugging logic bugs in hardware is inherently more complex than identifying software bugs with existing golden test cases. 3) The absence of reliable test cases requires multi-tasking solutions, performing both bug identification and correction. complicates the multi-tasking required for effective HLS debugging. In this work, we propose a customized solution named HLSDebugger to address the challenges. HLSDebugger first generates and releases a large labeled dataset with 300K data samples, targeting HLS logic bugs. The HLSDebugger model adopts an encoder-decoder structure, performing bug location identification, bug type prediction, and bug correction with the same model. HLSDebugger significantly outperforms advanced LLMs like GPT-4 in bug identification and by more than 3x in bug correction. It makes a substantial advancement in the exploration of automated debugging of HLS code.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.