Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing the Sensitivity of Vision Language Models in Visual Question Answering (2507.21335v1)

Published 28 Jul 2025 in cs.CV

Abstract: We can think of Visual Question Answering as a (multimodal) conversation between a human and an AI system. Here, we explore the sensitivity of Vision LLMs (VLMs) through the lens of cooperative principles of conversation proposed by Grice. Specifically, even when Grice's maxims of conversation are flouted, humans typically do not have much difficulty in understanding the conversation even though it requires more cognitive effort. Here, we study if VLMs are capable of handling violations to Grice's maxims in a manner that is similar to humans. Specifically, we add modifiers to human-crafted questions and analyze the response of VLMs to these modifiers. We use three state-of-the-art VLMs in our study, namely, GPT-4o, Claude-3.5-Sonnet and Gemini-1.5-Flash on questions from the VQA v2.0 dataset. Our initial results seem to indicate that the performance of VLMs consistently diminish with the addition of modifiers which indicates our approach as a promising direction to understand the limitations of VLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.