Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Improving Adversarial Robustness Through Adaptive Learning-Driven Multi-Teacher Knowledge Distillation (2507.20996v1)

Published 28 Jul 2025 in cs.CV

Abstract: Convolutional neural networks (CNNs) excel in computer vision but are susceptible to adversarial attacks, crafted perturbations designed to mislead predictions. Despite advances in adversarial training, a gap persists between model accuracy and robustness. To mitigate this issue, in this paper, we present a multi-teacher adversarial robustness distillation using an adaptive learning strategy. Specifically, our proposed method first trained multiple clones of a baseline CNN model using an adversarial training strategy on a pool of perturbed data acquired through different adversarial attacks. Once trained, these adversarially trained models are used as teacher models to supervise the learning of a student model on clean data using multi-teacher knowledge distillation. To ensure an effective robustness distillation, we design an adaptive learning strategy that controls the knowledge contribution of each model by assigning weights as per their prediction precision. Distilling knowledge from adversarially pre-trained teacher models not only enhances the learning capabilities of the student model but also empowers it with the capacity to withstand different adversarial attacks, despite having no exposure to adversarial data. To verify our claims, we extensively evaluated our proposed method on MNIST-Digits and Fashion-MNIST datasets across diverse experimental settings. The obtained results exhibit the efficacy of our multi-teacher adversarial distillation and adaptive learning strategy, enhancing CNNs' adversarial robustness against various adversarial attacks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube